準天頂衛星システムサービス パフォーマンススタンダード/ユーザインターフェース仕様書 共通編、衛星測位サービス編 ご意見/ご質問回答

準天頂衛星システムサービス パフォーマンススタンダード/ユーザインタフェイス仕様書

- ①共通編、②衛星測位サービス編 (ドラフト2014年2月25日版)
- のドラフト版公開に伴い、2/28~3/17の期間にご意見・ご質問を募集致しました。
- 多くの方のご意見・ご質問をいただき、誠にありがとうございました。

今後も以下のドキュメントを順次公開してまいりますので、引き続き皆様のご協力の程、 よろしくお願い致します。

- ③サブメータ級測位補強サービス/災害・危機管理通報サービス編
- 4)センチメータ級測位補強サービス編
- ⑤衛星安否確認サービス編
- ⑥測位技術実証プラットフォームサービス編

No.	文書名	項番•図番	ご意見・ご質問	回答
1	パフォーマンススタンダード 共通編		インフラ側サービスの保証はどのようにされ、サービス水準未達の場合にはどのように是正処置がとられるのか。サービス水準についてのチェック頻度等はどうなるのか。	パフォーマンススタンダードに記載した性能は日々チェックをして必要な 是正を行います。性能は、サービスアベイラビリティの範囲で保証しま す。
2			初号機と2号機以降のRFの仕様、航法メッセージの仕様は異なったままなのか。	初号機と2号機以降のRF仕様は異なったままです。 初号機の航法メッセージ仕様は、JAXAから準天頂衛星システムサー ビスに運用が移管されるタイミングで変更します。
3		3	準天頂衛星システムとは何かを示すために、QZSSの目的(あるいはミッション)、機能等を記載願いたい。それらが他の文書に記載されるのであれば、その文書を明示願いたい。	QZSSの目的は、パフォーマンススタンダードに記載したサービスを提供することです。このサービスを実現するシステムとしての説明は、パフォーマンススタンダードに記載していると考えております。
4		3.1.2、3.1.3	, , , , , , , , , , , , , , , , , , , ,	サブメータ級やセンチメータ級の測位補強サービスの仕様については検討中であり、今後公表していきます。
5		3.1.2、3.1.4		両サービスの名称が似ていることによる混乱などもあり、主な目的に適した名称を付けたもので、平時の民生利用を制限したものではありません。詳細は各サービス編にて確認願います。
6		表 3.2-1		現状では、ブロックⅡ Gは1機体制であり、バックアップ体制は取ることができません。
7	パフォーマンススタンダード 衛星測位サービス編	3.1	ر۱ _°	仰角については、任意の経緯度で確認できる無料アプリを開発しており、近いうちに公開します。 サービス範囲について、現状は最低仰角を示しており、静止衛星も含めたサービス範囲は静止衛星位置決定後に反映します。
8				図では仰角60度の線が北海道を横切ってますが、北海道を含め日本全国が仰角60度以上の高仰角サービス地域となっておりますので図を修正します。
9		3.2.1	SIS-UREの2.6mはGPS/BlockIIIの1m、Beidouの2.5mよりも低く競争力に欠けるので、 改善するべきではないか。	サービス仕様としては2.6mとなってますが、準天頂軌道衛星で 1.0m、静止衛星で1.5mを目標値として改善していくことにしていま す。

10	パフォーマンススタンダード 衛星測位サービス編	3.3.1	衛星1機が不具合により1機ごとのアベイラビリティを満足できない場合、例えば不具合等により長期の機能停止となった場合コンステレーションアベイラビリティはどこまで低下するのか。2機の場合どうか。	
11		3.7(2)	座標系について、WGS84に対して2cm以内ではなく、最新のIGSxx (xxは年度)に対して2cm(95%)以内とするべきではないか。	衛星測位サービスは、GPSと組み合わせて測位を行うサービスのため、GPSの座標系であるWGS84に近づけるよう管理することにしています。
12			サブメータ級とセンチメータ級の測位補強サービスについて、座標系について別途記載されるのか。	サブメータ級とセンチメータ級の測位補強サービスについても各サービス 編で座標系について記載します。
13	ユーザインタフェース仕様書 衛星測位サービス編	3.1.1-1	ブロック I のL1CP の変調方式は、ブロックⅡ 運用開始後もBOC のままですか。	ブロック I のL1CPの変調方式は、ブロックⅡ 運用後もBOCのままで す。
14			ブロックΙΙ でL1の占有帯域を広げた理由は何でしょうか。	米国がGPS IIIから帯域幅を30.69MHzに広げたため、日本もこれに合わせて広い帯域としました。
15			IMESの仕様については、どうなりますか。	準天頂衛星システムでは、IMESのサービスを提供しませんので、仕様を作成する予定はありません。