「準天頂衛星システム ユーザインタフェース仕様書 サブメータ級測位補強サービス /災害・危機管理通報サービス編 について

> 2015年07月16日 準天頂衛星システムサービス株式会社

く共通>

IS-QZSS サブメータ級測位補強サービス / 災害・危機管理通報サービス編 (IS-QZSS-L1S-001)の構成

1. IS-QZSSサブメータ級測位補強サービス/ 災害・危機管理通報サービス編の構成

IS-QZSS-L1S-001**の構成**

- 1. 範囲
- 2. 関連文書・用語の定義
- 3. 信号仕樣
 - 3.1. RF**特性***
 - 3.2. PRN⊐**−**▶*
- 4. メッセージ仕様
 - 4.1. L1S
 - 4.1.1. メッセージ構造*
 - 4.1.2. メッセージの内容*
 - 各メッセージのフォーマット*
 - 各メッセージのパラメータ
 - 4.1.3. 欠番
 - 4.1.4. IS-QZSS 1.6版(L1-SAIF)との差異*

5. ユーザアルゴリズム

- 5.1. 時刻系
- 5.2. 座標系
- 5.3. 定数
- 5.4. ヘルス及びインテグリティ
- 5.5. 補正情報の適用手順

^{*} 本資料において説明する項目を示す

2. IS-QZSSドラフトからの変更点

- サブメータ級測位補強サービスの内容見直しに伴い、IS-QZSSドラフト(2014/11/07)より以下の内容を見直しした。
 - ✓ メッセージ仕様(4章)
 - ✓ 軌道時刻予報(LTE:長寿命エフェメリス)の追加
 - ✓ DGPS方式に関するメッセージタイプの見直し
 - ✓ 最大更新間隔/有効期間の修正
 - ✓ ユーザアルゴリズム(5章)
 - ✓ DGPS方式に伴う以下の修正
 - ✓ 衛星選択アルゴリズム(5.5.1項):QZSSヘルスの定義
 - ✓ ディファレンシャル補正(5.5.4項): 監視局情報の選択

信号仕様 (IS-QZSS-L1S-001 3項)

2. 信号仕様/信号構造、PRNコード特性

信号構造(3.1.1項)

サブメータ級測位補強信号(L1S)の信号構造は、以下の通りである。

周波数帯	信号名	変調方式	PRN コード名	メッセージ名
L1	L1S	BPSK	L1S	L1S

PRN**コード特性(**3.1.1**項)**

サブメータ級測位補強信号(L1S)のPRNコード特性は、以下の通りである。

PRNコード名	チップレート	長さ	周期
L1S	1.023Mcps	1023 チ ップ	1ms

2. 信号仕様/メツセージ特性

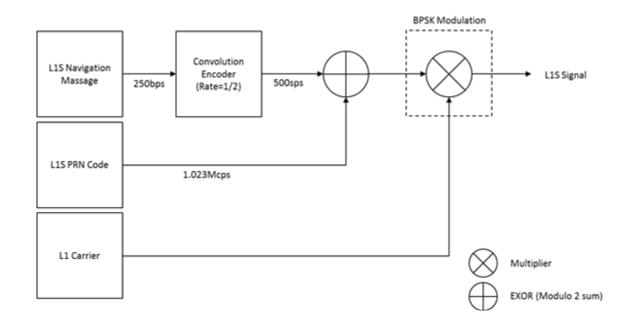
メッセージ特性(3.1.1項) サブメータ級測位補強信号(L1S)のPRNコード特性は、以下の通りである。

メッセージ名	ピットレート	シンボルレート	周期 (最小フレーム)	符号化方式
L1S	250bps	500sps	1s	CRC 畳み込み符号

2. 信号仕様/周波数

周波数(3.1.2項)

サブメータ級測位補強信号(L1S)の周波数帯、中心周波数公称値、占有帯域幅は以下の通りである。


		占有帯域幅		
周波数带中心周波数公称值		QZSS ブロック I	QZSS プロック II	
L1	1575.42[MHz]	24.0MHz (±12.0MHz)	30.69MHz (±15.345MHz)	

2. 信号仕様/変調方式

変調方式(3.1.3項)

L1S信号は、前頁に示す中心周波数を持つ搬送波に対して、PRN コード及び 測位信号がモデュロ2 で加算された信号を位相変調した信号である。L1S信号 はBPSKで変調を行う。

2. 信号仕様/RF特性

RF特性に関する項目の対応表

項目番号	項目名	QZSS ブロック I	QZSS ブロック II
3.1.4	相関損失	0.6dB 以下	0.6dB 以下
3.1.5	搬送波位相雑音	0.1rad(RMS)以下	0.1rad(RMS)以下
3.1.6	スプリアス(※)	-40dBc 以下	-40dBc 以下
3.1.8	最低信号強度	-161.0dBW	-158.5dBW
3.1.9	偏波特性	2.0dB 以下	2.0dB 以下
3.1.11	PRN コードジッタ	2.0ns(3σ)以下	2.0ns(3σ) 以下

※1559-1610[MHz]帯から電波天文の帯域である1610.6-1613.8[MHz]帯への 衛星1機あたりの不要放射レベルは以下である。

静止軌道衛星:不要放射EIRP密度-86.9[dBW/Hz] 以下 準天頂軌道衛星:不要放射EIRP密度-91.9[dBW/Hz] 以下

2. 信号仕様/PRNコード

PRN**番号の割り当て**(3.2.1**項**)

✓ サブメータ級測位補強サービス/災害・危機管理通報サービスでは、PRN183から PRN191の9種類から各衛星に一つを選択して割り当てる。

PRN番号	衛星識別	備考
183	QZO 衛星	
184	QZO 衛星	
185	QZO 衛星	
186	QZO 衛星	
187	QZO 衛星	
188	QZO 衛星 /GEO 衛星	割り当ては未定
189	GEO 衛星	
190	GEO 衛星	
191	GEO 衛星	

2. 信号仕様/PRNコード

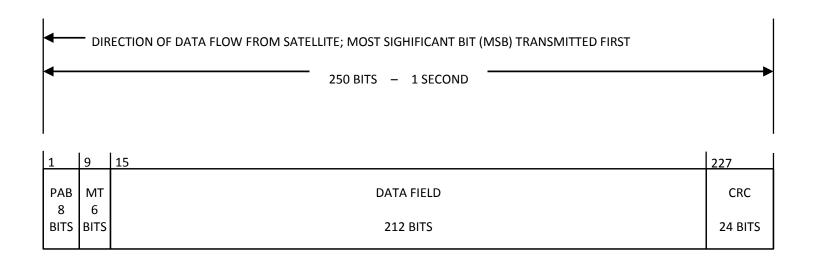
L1S**信号の**PRN**コード(**3.2.2**項**)

L1S**信号の**PRN**コードは、チップレート**1.023[MChip/s]**、長さ**1[ms] (1023**チップ**)で、拡 散方式はBPSK**である**。

詳細は、IS-QZSS-L1S-001の3.2.2項による。

非標準コード(3.2.3項)

L1S信号では非標準コードを使用しないため定義しない。


メッセージ仕様 (IS-QZSS-L1S-001 4項)

3. メッセージ仕様/概要

メッセージ構造 概要(4.1.1.1項)

- ✓ サブメータ級測位補強メッセージおよび災危通報は250ビットから構成される。
- ✓ データ速度は250 [bps]であるから、メッセージの伝送時間は1秒であり、毎秒1個のメッセージが送信される。
- ✓ メッセージの送信順序は規定されず、各1秒間にはどんなメッセージタイプも送信され 得る。

3. メッセージ仕様/タイミング

送信タイミング(4.1.1.2項(1))

✓ L1S信号によって送信されるサブメータ級測位補強メッセージおよび災危通報の送信タイミングは、衛星毎に異なるタイミングで更新される場合がある。

最大更新間隔(4.1.1.2**項**(2))

項目	メッセージタイプ	最大送信間隔(秒)	備考
試験モード	0	6	試験モードとして試験を行う場合にのみ、最大送 信間隔6秒で送信する
軌道時刻予報	40,41	4	 ・最大送信間隔毎に、40,41のどちらか一方を配信する。(正秒(0秒)から2秒、6秒、10秒・・・と4秒おき) ・ただし、毎分30秒ではIOD情報(Type49)を送信する
災危通報	43,44	4	最大送信間隔毎に、43,44のどちらか一方を配信 する。(正秒(0秒)から4秒おき)
監視局情報	47	30	
PRNマスク情報	48	30	
IOD情報	49	60	
DGPS補正	50	30	
衛星ヘルス情報	51	(N/A)	衛星異常検出時に奇数秒にて3回連続送信する
ヌルメッセージ	63	(N/A)	

3. メッセージ仕様/タイミング

有効期間(4.1.1.2**項**(3))

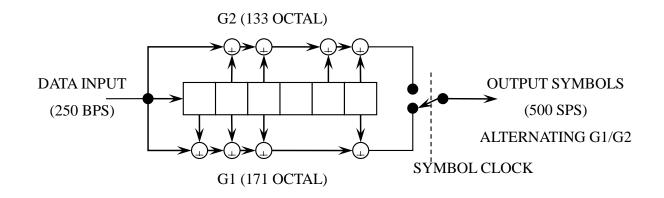
- ✓ サブメータ級測位補強メッセージに含まれる情報には、それぞれの特性に応じた有効期間が設定されている。
- ✓ 災危通報には有効期間は設定されていない。
- ✓ 送信されてから有効期間が経過した情報については、以後の処理に使用することができない。

項目	メッセージタイプ	有効期間(秒)
試験モード	0	(N/A)
軌道時刻予報	40,41	(N/A)
災危通報	43,44	(N/A)
監視局情報	47	86400
PRNマスク情報	48	60
IOD情報	49	120
DGPS補正	50	60
衛星ヘルス情報	51	30
ヌルメッセージ	63	(N/A)

3. メッセージ仕様/巡回冗長検査(CRC)

巡回冗長検査(CRC) (4.1.1.3項)

- ✓ 250ビットのメッセージの末尾に24ビットのCRCパリティコードを付与する。
- ✓ バースト誤りおよびランダム誤りのいずれに対しても、ビット誤り率≦0.5の時、誤り見逃し率≦2-24 (=5.96×10-8)でメッセージを保護する。
- ✓ 保護対象はメッセージ構造(250ビット)の内のビット1からビット226までとする。
- ✓ CRCパリティ生成多項式


$$g(X)=X^{24}+X^{23}+X^{18}+X^{17}+X^{14}+X^{11}+X^{10}+X^{7}+X^{6}+X^{5}+X^{4}+X^{3}+X+1$$

3. メッセージ仕様/前方誤り訂正(FEC)

前方誤り訂正(FEC) (4.1.1.4項)

- ✓ サブメータ級測位補強メッセージおよび災危通報を構成するデータビットの伝送速度は250 [bps]であるが、これは前方誤り訂正符号化器により500 [sps]のメッセージシンボルに符号化されて送信される。
- ✓ FEC の符号化率は1/2、拘束長は7である。
- ✓ 以下に示す符号化器が用いられている。各ビットが送信される4 [ms]のうち、前半の2 ミリ秒はG1、後半の2ミリ秒はG2 レジスタ側の出力が選択される。

3. メッセージ仕様/メッセージの内容

メッセージの内容 概要(4.1.2.1項)

サブメータ級測位補強メッセージおよび災危通報の各メッセージタイプに格納される内容を示す。QZSのエフェメリスやアルマナックは、L1C/A信号(衛星測位サービス)から取得する。

メッセージタイプ	L1S内容
0	試験モード
40, 41	軌道時刻予報
43, 44	災危通報
47	監視局情報
48	PRNマスク情報
49	IOD情報
50	DGPS補正
51	衛星ヘルス情報
63	ヌルメッセージ

3. メッセージ仕様/メッセージの内容

共通部(4.1.2.2項)

サブメータ級測位補強メッセージおよび災危通報の全てのメッセージタイプには、「プリアンブル」および「メッセージタイプ」が共通的に含まれる。

プリアンブルは、次の3パターンが順番に繰り返される。プリアンブルについてもFEC符号化が適用される。

パターンA 01010011

パターンB 10011010

パターンC 11000110

パターンAのプリアンブルの最初のビットの送信開始は、6秒のL1C/A信号(GPS信号およびQZS衛星測位サービス信号)の航法メッセージサブフレームの開始と同期している。 プリアンブルは、パターンA→パターンB→パターンC→パターンA→・・・の順で繰り返される。

MT

6 BITS

項目	内容	有効範囲	ビット数	LSB	単位
PAB	プリアンブル	-	8	_	_
MT	メッセージタイプ	0-63	6	1	_

PAB