

EU-Japan 4th Roundtable Tokyo, Japan March 14, 2019

ENRI

DFMC SBAS: Reception of QZSS L5 SBAS Signal in Europe

Takeyasu Sakai <sakai@mpat.go.jp> Electronic Navigation Research Institute National Institute of Maritime, Port and Aviation Technology, Japan

SI IDF 1

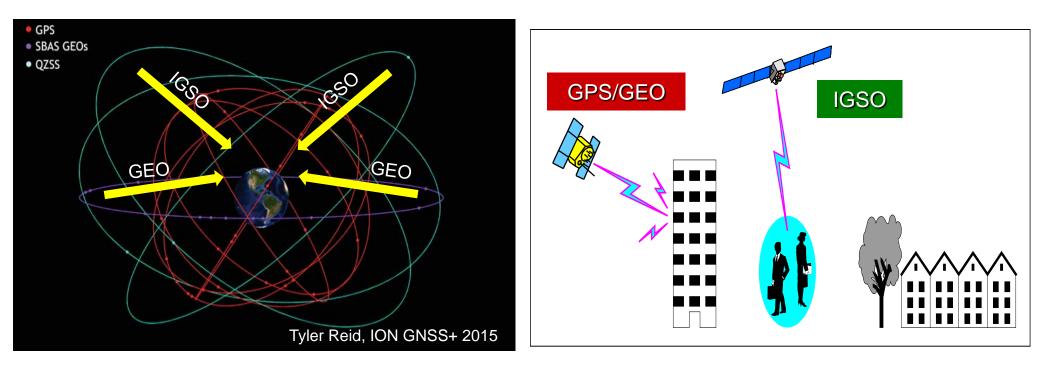
- SBAS: Satellite-Based Augmentation System
 - International standard augmentation system primarily for aviation.
 - > International standard by ICAO (International Civil Aviation Organization).
 - Transmits Augmentation information from the SBAS satellite.
 - ◆ Augments GNSS in terms of accuracy and integrity.
 - Current standard: Single-frequency SBAS on L1.
 - ➢ US WAAS, Japanese MSAS, European EGNOS, and Indian GAGAN.
- DFMC SBAS: The Second Generation SBAS
 - Dual-Frequency Multi-Constellation SBAS using L5 frequency.
 - > Standardization activities ongoing: Recently defined the baseline.
 - ENRI has been conducting DFMC SBAS experiment with QZSS L5S signal.
- EU-Japan Joint Experiment
 - Joint experiment of DFMC SBAS: Including reception in Nordic region.
 - Trial of receiving the signal at GSA HQ in Prague next week (March 21-22).

SBAS Satellite GNSS Satellites **GNSS** Signals Jsers Uplink Station **Ground Monitor Network** Courtesy: FAA

EU-Japan 4th Roundtable, March 2019

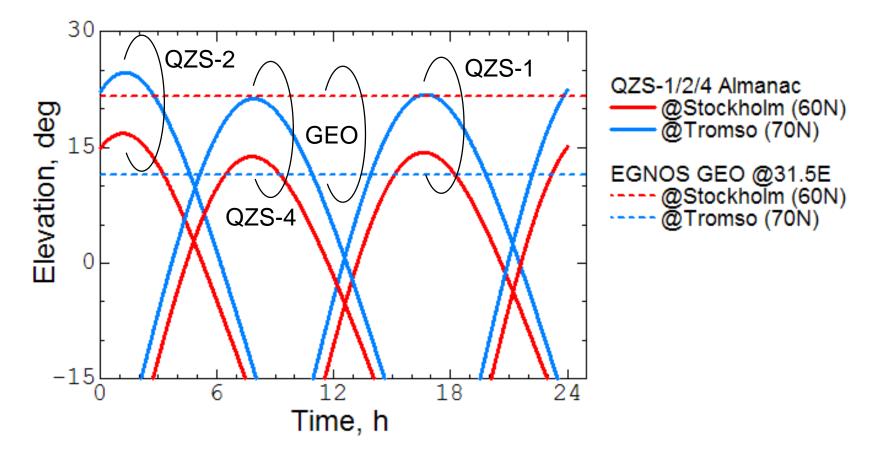
SLIDE 2

- Monitors consistency of GPS signals on the ground.
- Transmits differential correction and integrity information via SBAS satellite.



SUDF 3

- DFMC (Dual-Frequency Multi-Constellation) SBAS
 - The second generation SBAS following L1 SBAS.
 - ➤ Using L5 SBAS signal instead L1.
 - > Eliminates ionospheric effects thanks to dual-frequency operation.
 - > Vertical guidance service everywhere in the coverage.
 - Supports Galileo (and QZSS).
 - Allows non-GEO transmission.
 - Standardization activities ongoing at the ICAO.
- New Feature: Transmission by Non-GEO SBAS
 - DFMC SBAS could be transmitted by non-GEO satellites like QZSS IGSO.
 - > Improves availability of SBAS signal by transmission from high elevation angle.
 - > Possible solution for applications where GEO signal is likely blocked.
 - Enables SBAS service independent of the latitude of the service area by combination of dual-frequency operation and non-GEO transmission.



SI IDF 4

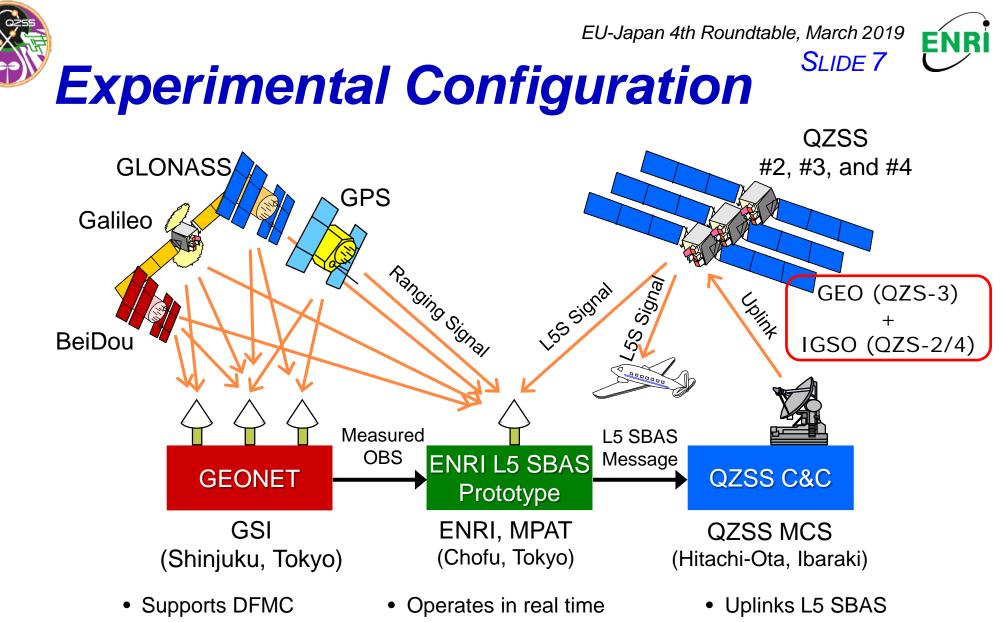
- DFMC SBAS could be transmitted by non-GEO satellites like QZSS IGSO.
- Improves availability of augmentation signals where GEO signal is blocked. •
 - Arctic/Nordic regions, mountain area, urban canyon,...
 - Navigating Arctic routes and precise positioning for resource exploration. \succ
 - Note DFMC SBAS is not influenced by ionosphere even in Equatorial regions. \succ
 - Seamless service from Equator to Poles, mountain to urban canyons...

ENR

SLIDE 5

- Elevation angles computed from QZS-1/2/4 almanacs.
- QZSS IGSO satellites are visible in Nordic region; Elevation is higher than EGNOS GEO at some Northern location.

SUDF 6


• Prototype DFMC SBAS Developed by Japan

- The second generation SBAS following L1 SBAS.
 - > Eliminates ionospheric effects thanks to dual-frequency operation.
 - ◆ Vertical guidance service everywhere in the coverage.
- Electronic Navigation Research Institute, National Institute of Maritime, Port and Aviation Technology has developed the prototype.
 - GPS/GLONASS/Galileo/QZSS-capable dual-frequency SBAS.
 - > Compliant with the draft standards of L5 SBAS being discussed at ICAO.

◆ Helps validation activities ongoing at ICAO.

• DFMC SBAS Experiment has been Conducted with QZSS

- The First L5 SBAS experiment with live L5 signal from the space.
 - ➤ Using QZSS L5S augmentation signal transmitted from QZS-2, -3, and -4.
- Prototype DFMC SBAS is used for the experiment.
- Began the experiment on 23 Aug. 2017 via L5S signal of QZS-2 IGSO.
 ➢ Now transmitting from QZS-2/4 IGSO and QZS-3 GEO.

- Provides observation in real time
 - Dual-Frequency
 - Supports GPS, GLONASS, Galileo, and QZSS
- Uplinks L5 SBAS message stream for transmission

3

2

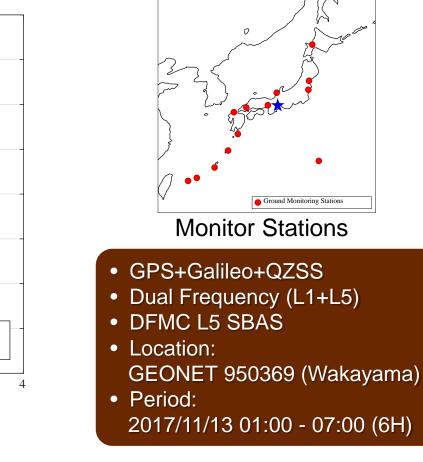
1

0

-1

-2

-3


-4

-5

-4

-2

Northward error (m)

Evaluation of L5 SBAS message generated in real time.

0

Eastward error (m)

Supporting GPS, Galileo, and QZSS in L1/L5 dual-frequency mode.

Non-corrected

Corrected

2

Confirmed that L5 SBAS augments multi-constellation of GPS+Galileo+QZSS.

- EU-Japan Joint Experiment
 - Planned under the Cooperation Arrangement on GNSS.

Schedule for DFMC SBAS Reception Trial

SI IDF 9

Transmission from	2018 to 2019	2020 to 2022	After 2023
QZSS L5S	ENRI receiver	ENRI & Thales Rx	
EGNOS V3			ENRI & Thales Rx

- First Step: Reception trial in Prague
 - Trial of receiving L5S at GSA HQ in Prague next week (March 21 to 22).
 - Using ENRI L5S-capable receiver.
- Next Step: Reception trial in Nordic Region
 - Likely in this summer.